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In a bending load test for brittle materials, such as ceramics for spacecraft and aircraft,
decreasing the number of test specimens required is a crucial problem. This paper
discusses the effectiveness of using the information of both fracture stress and fracture
location to decrease the number of specimens required to obtain the same precision as the
Weibull estimator. The following results were obtained: It was found that by adding the
fracture location information, the precision of the Weibull parameter estimation under the
optimal design became 1.5–1.9 times better compared with the case of using only the
fracture stresses. This means the number of samples necessary to attain the same precision
becomes 1/1.5–1/1.9. Tables and figures which give information on the number of samples
necessary to attain the required precision are given. C© 2004 Kluwer Academic Publishers

1. Introduction
Brittle materials such as ceramics have not been fre-
quently used as structural materials because of their low
reliability. In recent years, however, structural ceramics
have been viewed with increasing interest because of
the rapid progress in the improvement of their mechan-
ical and physicochemical properties. Since almost all
structural ceramics fail in a brittle manner, they tend
to have a wide strength scatter. Therefore, implement-
ing a loading test on nominally identical specimens and
obtaining a distribution of strength are becoming im-
portant. Hence, the weakest link theory by Weibull [1]
has been playing important roles.

Oh and Finnie [2] developed a statistical theory of
fracture location which can be used to estimate not only
the fracture stress but also the fracture location using
Weibull’s function. Aoki and Sakata [3] and Aoki et al.
[4] applied this theory on brittle fracture and proved
its validity. Matsuo and Kitakami [5, 6] combined the
statistical theory of fracture location with a competing
risk theory since ceramics may contain many kinds of
defects.

The number of test specimens in a loading test
for assuring the reliability of a ceramic part may be
from thirty to fifty and the price of test specimens
reaches a large amount, especially for spacecraft and
aircraft. Under these circumstances, if the same pre-

cision of the estimator could be obtained by using a
smaller number of test specimens than before, it is
more preferable. This paper discusses the effectiveness
of using both fracture stress and fracture location to
decrease the number of test specimens to achieve the
same precision of the Weibull estimator on a bending
load test.

2. Precision of Weibull estimator using both
fracture stress and fracture location

According to Oh and Finnie’s theory [2] modified by
Matsuo and Kitatami [5, 6], the probability of a body
being fractured by the l-th cause of fracture with refer-
ence stress range (σ, σ + dσ ) at a location (ξ, ξ + dξ )
within an area Al is given by

fAl (σ, ξ ) dξdσ = exp(−Bl)
∂

∂σ
(Gl) dξdσ , (1)

where fAl (σ, ξ ) is a joint probability density function
(j.p.d.f.) relating to fracture stress σ and fracture loca-
tion ξ , and Bl is a risk of fracture relating to the l-th
cause of fracture. Here reference stress σ is the level of
stress caused in the body by an external load, ordinar-
ily represented by the maximum stress in the body. If
the uniaxial Weibull distribution is used for the fracture
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stress σ , Bl and G l are given by

Bl =
∫

ξ∈Al

Gldξ, (2)

Gl =
(

σξ − σul

σl

)ml

Y (σξ , σul )

(
∂ Al

∂ξ

)

where σξ is the maximum principal stress at location ξ

in the body; ml, σl and σul (l = 1, 2, · · · , �) are shape,
scale, and location parameters of the Weibull distribu-
tion related to the l-th cause of fracture; Y (σξ , σul ) is a
Heaviside step function defined by

Y
(
σξ , σul

) ≡
{

1, if σξ > σul

0, if σξ ≤ σul .

Thus, using the competing risk theory with indepen-
dent risks, the probability density function fA(σ, ξ ) in-
volving n causes of fracture is expressed as [6],

fA(σ, ξ ) =
n∏

i=1

Ri(σ )
n∑

j=1

λj,

Ri(σ ) = 1 −
∫ σ

0

∫
ξt

fAi (σ, ξ ) dξdσ, (3)

λj = fAj (σ, ξ )/Rj(σ ),

A = A1 ⊕ A2 ⊕ · · · ⊕ An.

Here
∫
ξt

means the integration over the total domain of
Ai, ⊕ symbol indicates direct sum. Equation 3 is valid
for arbitrary state of stress and arbitrary type of fracture
origin. Using this equation, we can obtain not only the
joint probability density for fracture stress and fracture
location, but also the distribution function of fracture
stress, fracture location and/or crack size of fracture
origin as a marginal of Equation 3 (see [6]).

From the view point of the reliability of ceramic parts,
shape parameter, ml, plays the most important roles
among the three parameters appeared in the above equa-
tions. Then it is generally called a “Weibull parameter”.
This paper focuses on the estimation of this parameter.

In this article, internal cracks (l = 1) and surface
cracks (l = 2) are considered as the causes of fracture.
Applying (1) to a 3-point bending load test (see Fig. 1),
the j.p.d.f.s of fracture stress and fracture location be-
come [5, 6]

fA1(σ, x, y) = 2bm1σ
m1−1

{
x(h − y)

σ1hL

}m1

· exp

{
−Ve

(
σ

σ1

)m1
}

, (4)

fA2(σ, x) = 2bm2σ
m2−1

(
x

σ2L

)m2

· exp

{
−Ae

(
σ

σ2

)m2
}

, (5)

Figure 1 3-point bending load test and the sizes of specimen.

where

Ve = Vp · Vm1

Vp ≡ bhL, Vm1 ≡ 2

(m1 + 1)2
(6)

Ae = Ap · Am2

Ap ≡ bL , Am2 ≡ 2

m2 + 1
. (7)

Since the Weibull parameter, m1 and m2, are almost
equal in many cases (e.g., [7]), we assume m1 = m2 ≡
m. Then, using the competing risks model, the observed
likelihood becomes

L(m, σ1, σ2) = N !

n1!n2!

n1∏
i=1

[
2bmum−1

i

{
xi(h − yi)

σ1hL

}m

× exp

{
−Ve

(
ui

σ1

)m}
× exp

{
−Ae

(
ui

σ2

)m}]
×

n2∏
j=1

[
2bmvm−1

j

(
sj

σ2L

)m

× exp

{
−Ae

(
vj

σ2

)m}

× exp

{
−Ve

(
vj

σ1

)m}]
, (8)

where θ ≡ (m, σ1, σ2)′, nl is the number of specimens
fractured by the l-th cause. Let m̂ denote the maximum
likelihood estimator (MLE) based on (8), and AVar(m̂)
be its asymptotic variance. From the result of [7], if
K different design variables with the same height are
considered, the optimum design is given by K = 2 with
N1 = N2 = N/2, where Nk is the number of specimens
in the k-th design variable (the k-th level). In this case,
AVar(m̂) becomes

AVar(m̂) = 1

N

{
p1 + 1

(m + 1)2
+ π2

6m2

+ 1

4m2
log2

(
b1L1

b2L2

)}−1

(9)

which attains its minimum value. p1 is the probability of
internal cracking and bkLk represents the surface area
of the k-th level (k = 1, 2). Throughout this paper, the
heights of the specimens are assumed to be constant.

3. Precision of Weibull estimator using
fracture stress or fracture location

If only the information regarding fracture stresses
is available for estimating Weibull parameters, the
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probability density functions (p.d.f.s) of the internal
cracks and surface cracks are given by

internal crack: f1(σ ) = 2bhL

(m1 + 1)2
m1

σ m1−1

σ
m1
1

× exp

{
−Ve

(
σ

σ1

)m1
}
, (10)

surface crack: f2(σ ) = 2bL

m2 + 1
m2

σ m2−1

σ
m2

2

×
{
−Ae

(
σ

σ2

)m2
}
, (11)

respectively. Therefore, using the competing risks
model the observed likelihood becomes

L̃(θ ) = N !

n1!n2!

n1∏
i=1

[
2bhL

(m + 1)2
m

um−1
i

σ m
1

× exp

{
−Ve

(
ui

σ1

)m}
× exp

{
−Ae

(
ui

σ2

)m}]

×
n2∏

j=1

[
2bL

m + 1
m

vm−1
j

σ m
2

× exp

{
−Ae

(
vj

σ2

)m}

× exp

{
−Ve

(
vj

σ1

)m}]
, (12)

where we set m1 = m2 ≡ m. Let m̃ denote the MLE
based on (12), and AVar(m̃) be its asymptotic variance.
If the optimum design (two design variables and N1 =
N2 = N/2: Proof is given in Appendix A.1) is applied,
AVar(m̃) is given by

AVar(m̃) = m2

N

{
π2

6
+ 1

4
log2

(
b1L1

b2L2

)}−1

. (13)

If only the information on fracture locations is utilized,
the p.d.f.s of the internal cracks and surface cracks are
derived by integrating out σ of (4) and (5) as

internal crack: g1(x, y) =
∫ ∞

σ=0
fA1(σ, x, y) dσ

= (m1 + 1)2{x(h − y)}m1

(hL)m1+1
,

(14)

surface crack: g2(x) =
∫ ∞

σ=0
fA2(σ, x) dσ

= (m2 + 1)xm2

Lm2+1
, (15)

respectively. Putting λ ≡ x/L , µ ≡ y/h, (14) and
(15) become

q1(λ, µ) = (m1 + 1)2λm1 (1 − µ)m1, (16)

q2(λ) = (m2 + 1)λm2, (17)

respectively. λ and µ represent the relative locations
of fracture origins, and q1(λ, µ) and q2(λ) are their
p.d.f.s. They do not include variables that are related
to the design variables. Therefore, even if the design
variables are changed in experiments, there is no con-
tribution by them to the precision of the estimators.
The observed likelihood from N test specimens is given
by

L∗(m) = N !

n1!n2!

n1∏
i=1

(m + 1)2 λm
i (1 − µi)

m

×
n2∏

j=1

(m + 1)λm
j , (18)

where we put m1 = m2 ≡ m. Let m∗ denote the MLE
based on (18), and AVar(m∗) be its asymptotic variance.
AVar(m∗) is given by

AVar(m∗) = (m + 1)2

N (p1 + 1)
, (19)

irrespective of the values of design variables (Proof is
given in Appendix A.2).

In the following, we discuss the effectiveness of the
utilization of both fracture stress and fracture loca-
tion using AVar(m̂), AVar(m̃) and AVar(m∗). Table I
represents AVar(m̂), AVar(m̃) and AVar(m∗) for N =
10, 20, 30, 50, 100, b1L1/b2L2 = 1, 2, 5, 10, where we
set N1 = N2 = N/2, m = 17.0, σ1 = 95.0, σ2 =
109.95 and p1 = p2 = 0.5.

From the table, the precision of the estimator m̂
measured by AVar(m̂) becomes about two times bet-
ter than that of AVar(m̃). This means that the number of
test specimens need only one-half to achieve the same

TABLE I Comparison of the precisions of the estimators m̂, m̃ and
m∗ using their asymptotic variances

Number
of design

N variables b1 L1/b2 L2 AVar(m̂) AVar(m̃) AVar(m∗)

10 1 1.0 9.689 17.57 21.60
2 2.0 9.314 16.37

5.0 7.960 12.61
10.0 6.708 9.729

20 1 1.0 4.844 8.785 10.80
2 2.0 4.657 8.187

5.0 3.980 6.303
10.0 3.354 4.865

30 1 1.0 3.230 5.856 7.200
2 2.0 3.105 5.458

5.0 2.653 4.202
10.0 2.236 3.243

50 1 1.0 1.938 3.514 4.320
2 2.0 1.863 3.275

5.0 1.592 2.521
10.0 1.342 1.946

100 1 1.0 0.969 1.757 2.160
2 2.0 0.931 1.637

5.0 0.796 1.261
10.0 0.671 0.973

N1 = N2 = N/2, p1 = p2 = 0.5.
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T ABL E I I Comparison of the precisions of m̂, m̃ and m∗ for different
m

N m AVar(m̂) AVar(m̃) AVar(m∗) AVar(m̃)
AVar(m̂)

AVar(m∗)
AVar(m̂)

20 2.0 0.082 0.113 0.299 1.378 3.646
5.0 0.445 0.708 1.198 1.591 2.692

17.0 4.657 8.187 10.80 1.758 2.319

b1 L1/b2 L2 = 2.0, N1 = N2 = N/2, p1 = p2 = 0.5.

precision as in the case where only the information of
fracture is used. In the table, AVar(m̂) and AVar(m̃) are
based on the optimum design. The larger b1L1/b2L2,
the better the precisions of m̂ and m̃. To the contrary, the
precision of m∗ is not affected by b1L1/b2L2 because
AVar(m∗) does not include these variables (the sizes of
test specimens).

The following relation is held among AVar(m̂),
AVar(m̃) and AVar(m∗) from (9), (13) and (19),

1

AVar(m̂)
= 1

AVar(m̃)
+ 1

AVar(m∗)
. (20)

Table II represents the comparison of the preci-
sions of m̂, m̃ and m∗ for different m. From the ta-
ble, we know that the larger the value of m, the larger
AVar(m̃)/AVar(m̂). That is, the effect of the utilization
of both fracture stress and fracture location becomes
larger as m increases compared with the case where
the only fracture stress is used. Also, we know that
the number of samples that is necessary to achieve the
same precision when only the fracture stress is used
becomes 1/1.758 times as large as that obtained by us-
ing both fracture stress and fracture location in the case
m = 17.0.

4. Determining the numbers and sizes of
specimens to attain the required precision

It is important to determine the number of test spec-
imens in order to attain the required precision of

T ABL E I I I Asymptotic variances of m̂, m̃, and m∗, and the effectiveness of the fracture stresse and fracture location information (m = 5.0)

b1 L1
b2 L2

σ2
σ1

(p1) N · AVar(m̂) N · AVar(m̃) N · AVar(m∗) AVar(m̃)
AVar(m̂)

AVar(m∗)
AVar(m̂)

1.0 0.9 (0.228) 10.01 15.20 29.32 1.518 2.929
1.0 (0.333) 9.724 15.20 27.00 1.563 2.777
1.1 (0.446) 9.437 15.20 24.90 1.610 2.638

2.0 0.9 9.550 14.16 29.32 1.483 3.070
1.0 9.290 14.16 27.00 1.525 2.906
1.1 9.028 14.16 24.90 1.569 2.758

5.0 0.9 7.949 10.91 29.32 1.372 3.688
1.0 7.768 10.91 27.00 1.404 3.476
1.1 7.583 10.91 24.90 1.438 3.283

10.0 0.9 6.539 8.416 29.32 1.287 4.483
1.0 6.416 8.416 27.00 1.312 4.208
1.1 6.290 8.416 24.90 1.338 3.958

20.0 0.9 5.273 6.429 29.32 1.219 5.560
1.0 5.193 6.429 27.00 1.238 5.200
1.1 5.110 6.429 24.90 1.258 4.872

AVar(·) is obtained by dividing the above values by N .
h = 3.0, N1 = N2 = N/2, p1 in bracket value represents the probability of fracture caused by an internal crack.

an estimator. For this purpose, the asymptotic vari-
ances AVar(m̂), AVar(m̃) and AVar(m∗) are presented
in Tables III–VII, for the several combinations of m
(Weibull shape parameter), σ2/σ1 (the ratio of Weibull
scale parameters), and b1L1/b2L2 (the ratio of sur-
face areas of specimens) where we set the height of
specimen, h = 3.0 mm. The combinations are as
follows;

m = {5.0, 10.0, 15.0, 20.0, 30.0},
σ2/σ1 = {0.9, 1.0, 1.1},

b1L1/b2L2 = {1.0, 2.0, 5.0, 10.0, 20.0}.

Here we use the optimum design where two design
variables being of equal height and an equal num-
ber of specimens on each level are applied. The val-
ues of tables represent N × AVar(·). That is, AVar(·)
is obtained by dividing the values in table by N (the
total number of specimens). For example, if h =
3.0, m = 10.0, b1L1/b2L2 = 20.0 and σ2/σ1 = 1.1,
then from Table IV, we get N × Var(m̂) = 19.77.
Therefore, if N = 30, AVar(m̂) becomes 19.77/30 =
0.659. Then a 95% confidence interval of m is given
by

m̂ ± 1.96
√

Var(m̂) = m̂ ± 1.96 ·
√

0.659

= m̂ ± 1.591. (21)

To examine the effect of the total number of speci-
mens, N , on the precision, Fig. 2 represents the changes
of AVar(m̂), AVar(m̃) and AVar(m∗) with N , where we
set h = 3.0, m = 20, b1L1/b2L2 = 5, σ2/σ1 = 1.0
and N1 = N2 = N/2. The changes are very large
when N is smaller than 30. Fixing N = 30, Fig. 3
shows the effect of b1L1/b2L2 on AVar(m̂), AVar(m̃)
and AVar(m∗). From the figure, we know that the effec-
tiveness of adding the fracture location information to
that of the fracture stress is large when b1L1/b2L2 is

274



T ABL E IV Asymptotic variances of m̂, m̃, and m∗, and the effectiveness of the fracture stresse and fracture location information (m = 10.0)

b1 L1
b2 L2

σ2
σ1

(p1) N · AVar(m̂) N · AVar(m̃) N · AVar(m∗) AVar(m̃)
AVar(m̂)

AVar(m∗)
AVar(m̂)

1.0 0.9 (0.087) 39.32 60.79 111.3 1.546 2.831
1.0 (0.214) 37.76 60.79 99.65 1.610 2.639
1.1 (0.414) 35.54 60.79 85.55 1.711 2.407

2.0 0.9 37.55 56.66 111.3 1.509 2.965
1.0 36.12 56.66 99.65 1.569 2.759
1.1 34.08 56.66 85.55 1.662 2.510

5.0 0.9 31.34 43.62 111.3 1.392 3.552
1.0 30.34 43.62 99.65 1.438 3.284
1.1 28.89 43.62 85.55 1.510 2.961

10.0 0.9 25.85 33.67 111.3 1.302 4.307
1.0 25.16 33.67 99.65 1.338 3.960
1.1 24.16 33.67 85.55 1.393 3.541

20.0 0.9 20.89 25.72 111.3 1.231 5.329
1.0 20.44 25.72 99.65 1.258 4.875
1.1 19.77 25.72 85.55 1.301 4.327

AVar(·) is obtained by dividing the above values by N .
h = 3.0, N1 = N2 = N/2, p1 in bracket value represents the probability of fracture caused by an internal crack.

T ABL E V Asymptotic variances of m̂, m̃, and m∗, and the effectiveness of the fracture stresse and fracture location information (m = 15.0)

b1 L1
b2 L2

σ2
σ1

(p1) N · AVar(m̂) N · AVar(m̃) N · AVar(m∗) AVar(m̃)
AVar(m̂)

AVar(m∗)
AVar(m̂)

1.0 0.9 (0.037) 88.01 136.8 246.8 1.554 2.804
1.0 (0.158) 84.50 136.8 221.1 1.619 2.616
1.1 (0.439) 77.32 136.8 177.9 1.769 2.300

2.0 0.9 84.06 127.5 246.8 1.516 2.936
1.0 80.86 127.5 221.1 1.577 2.734
1.1 74.26 127.5 177.9 1.717 2.395

5.0 0.9 70.22 98.15 246.8 1.398 3.515
1.0 67.97 98.15 221.1 1.444 3.253
1.1 63.25 98.15 177.9 1.552 2.812

10.0 0.9 57.96 75.75 246.8 1.307 4.259
1.0 56.42 75.75 221.1 1.343 3.919
1.1 53.12 75.75 177.9 1.426 3.348

20.0 0.9 46.87 57.86 246.8 1.234 5.266
1.0 45.86 57.86 221.1 1.262 4.821
1.1 43.66 57.86 177.9 1.325 4.074

AVar(·) is obtained by dividing the above values by N .
h = 3.0, N1 = N2 = N/2, p1 in bracket value represents the probability of fracture caused by an internal crack.

T ABL E VI Asymptotic variances of m̂, m̃, and m∗, and the effectiveness of the fracture stresse and fracture location information (m = 20.0)

b1 L1
b2 L2

σ2
σ1

(p1) N · AVar(m̂) N · AVar(m̃) N · AVar(m∗) AVar(m̃)
AVar(m̂)

AVar(m∗)
AVar(m̂)

1.0 0.9 (0.017) 155.8 243.2 433.6 1.561 2.783
1.0 (0.125) 150.1 243.2 392.0 1.620 2.612
1.1 (0.490) 133.5 243.2 296.0 1.822 2.217

2.0 0.9 148.8 226.6 433.6 1.523 2.913
1.0 143.6 226.6 392.0 1.578 2.730
1.1 128.3 226.6 296.0 1.766 2.306

5.0 0.9 124.4 174.5 433.6 1.402 3.485
1.0 120.7 174.5 392.0 1.445 3.247
1.1 109.8 174.5 296.0 1.590 2.696

10.0 0.9 102.8 134.7 433.6 1.311 4.220
1.0 100.2 134.7 392.0 1.344 3.911
1.1 92.55 134.7 296.0 1.455 3.198

20.0 0.9 83.14 102.9 433.6 1.237 5.215
1.0 81.48 102.9 392.0 1.262 4.811
1.1 76.34 102.9 296.0 1.348 3.877

AVar(·) is obtained by dividing the above values by N .
h = 3.0, N1 = N2 = N/2, p1 in bracket value represents the probability of fracture caused by an internal crack.
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T ABL E VII Asymptotic variances of m̂, m̃, and m∗, and the effectiveness of the fracture stresse and fracture location information (m = 30.0)

b1 L1
b2 L2

σ2
σ1

(p1) N · AVar(m̂) N · AVar(m̃) N · AVar(m∗) AVar(m̃)
AVar(m̂)

AVar(m∗)
AVar(m̂)

1.0 0.9 (0.004) 348.1 547.1 957.1 1.572 2.749
1.0 (0.088) 337.8 547.1 883.1 1.620 2.614
1.1 (0.628) 283.9 547.1 590.3 1.927 2.079

2.0 0.9 332.7 509.9 957.1 1.533 2.877
1.0 323.3 509.9 883.1 1.577 2.732
1.1 273.6 509.9 590.3 1.864 2.158

5.0 0.9 278.4 392.6 957.1 1.410 3.438
1.0 271.8 392.6 883.1 1.445 3.249
1.1 235.8 392.6 590.3 1.665 2.504

10.0 0.9 230.1 303.0 957.1 1.317 4.159
1.0 225.6 303.0 883.1 1.343 3.915
1.1 200.2 303.0 590.3 1.513 2.948

20.0 0.9 186.4 231.5 957.1 1.242 5.135
1.0 183.4 231.5 883.1 1.262 4.815
1.1 166.3 231.5 590.3 1.392 3.550

AVar(·) is obtained by dividing the above values by N .
h = 3.0, N1 = N2 = N/2, p1 in bracket value represents the probability of fracture caused by an internal crack.

small. From Equations 9, 13, and 19, we obtain

N × AVar

(
m̂

m

)
=

{
p1 + 1

(1 + 1
m )2

+ π2

6m2

+ 1

4m2
log2

(
b1L1

b2L2

)}−1

, (22)

Figure 2 The effect of the total number of specimens, N , on the asymptotic variances of m̂, m̃, and m∗ (h = 3, m = 20, b1 L1/b2 L2 = 5, σ2/σ1 = 1
and N1 = N2 = N/2). AVar(m̂): the asymptotic variance when both fracture stress and fracture location are utilized. AVar(m̃): the asymptotic variance
when only the fracture stress is used. AVar(m∗): the asymptotic variance when only the fracture location is used.

N × AVar

(
m̃

m

)
=

{
π2

6
+ 1

4
log2

(
b1L1

b2L2

)}−1

,

(23)

N × AVar

(
m∗

m

)
=

{
p1 + 1(
1 + 1

m

)2

}−1

. (24)
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Figure 3 The effect of b1 L1/b2 L2 on the asymptotic variances of m̂, m̃, and m∗ (h = 3, m = 20, σ2/σ1 = 1 and N1 = N2 = N/2 = 15).

Figure 4 Effect of m on AVar( m̂
m ), AVar( m̃

m ), and AVar( m∗
m ) (h = 3, b1 L1/b2 L2 = 5 and σ2/σ1 = 1).
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Figure 5 Effect of N on the asymptotic variances of m̂
m , m̃

m , and m∗
m (h = 3, b1 L1/b2 L2 = 5, σ2/σ1 = 1, N1 = N2 = N/2 and applicable for

m ≥ 10).

Figure 6 Effect of b1 L1/b2 L2 on the asymptotic variances of m̂
m , m̃

m , and m∗
m (h = 3, σ2/σ1 = 1, N1 = N2 = N/2 and applicable for m ≥ 10).
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Figure 7 Effect of the height of a specimen h on the asymptotic variances of m̂
m , m̃

m , and m∗
m (b1 L1/b2 L2 = 5, σ2/σ1 = 1, N1 = N2 = N/2 and

applicable for m ≥ 10).

Therefore, the above quantities are not affected by
m if m is large. Fig. 4 represents the effect of m on
these quantities for a fixed h, b1L1/b2L2 and σ2/σ1.
From the figure, we know that if m is greater than 10,
the asymptotic variances of m̂/m, m̃/m and m∗/m be-
come approximately constant, regardless of m. There-
fore, in the following, we set m = 20 and examine
the effect of N , b1L1/b2L2 and h on the variances.
Fig. 5 shows the effect of N on the variances. Simi-

T ABL E VII I Asymptotic variances of m̂
m , m̃

m , and m∗
m , and the effec-

tiveness of the fracture stresse and fracture location information

b1 L1
b2 L2

σ2
σ1

(p1) N · AVar( m̂
m ) N · AVar( m̃

m ) N · AVar( m∗
m )

1.0 0.9 (0.017) 0.389 0.608 1.084
1.0 (0.125) 0.375 0.608 0.980
1.1 (0.490) 0.334 0.608 0.740

2.0 0.9 0.372 0.567 1.084
1.0 0.359 0.567 0.980
1.1 0.321 0.567 0.740

5.0 0.9 0.311 0.436 1.084
1.0 0.302 0.436 0.980
1.1 0.274 0.436 0.740

10.0 0.9 0.257 0.337 1.084
1.0 0.251 0.337 0.980
1.1 0.231 0.337 0.740

20.0 0.9 0.208 0.257 1.084
1.0 0.204 0.257 0.980
1.1 0.191 0.257 0.740

AVar(·) is obtained by dividing the above values by N .
h = 3.0, m = 20.0, N1 = N2 = N/2, p1 in bracket value represents
the probability of fracture caused by an internal crack.

lar to Fig. 2, the effect of N is large when N is smaller
than 30. Figs 6 and 7 show the effect of b1L1/b2L2
and h on the variances. The values of the vertical axis
are multiplied by N . m̂ and m̃ are not affected much
by h, but m∗ is largely affected. Hence, for fixed h
and m, Table VIII shows the values of the asymptotic
variances for b1L1/b2L2 = 1, 2, 5, 10 and 20, and
σ2/σ1 = 0.9, 1.0 and 1.1. Table VIII corresponds to
Table VI. From Tables III to VII, we know that the
variance of m̂ becomes 1/1.5–1/1.9 times of that of m̃
when b1L1/b2L2 = 1 or 2. Therefore, the number of
samples necessary to attain the same precision is given
by 1/1.5–1/1.9 times compared with the case of using
only fracture stresses.

5. Conclusion
The effectiveness of adding the fracture location in-
formation to that of fracture stress on the Weibull pa-
rameter estimation under a 3-point bending load test is
examined. The following results were obtained:

1. Adding the fracture location information, the pre-
cision of the estimate of the Weibull parameter under
the optimal design becomes 1.5–1.9 times better than
the case of using only fracture stresses. This means the
number of samples required to attain the same precision
becomes 1/1.5–1/1.9.

2. Tables and figures which give the information on
the number of samples necessary to attain the required
precision are given.
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3. Asymptotic variances of m̂/m, m̃/m and m∗/m
were scarcely affected by the values of m when m is
greater than 10.

A Appendix
A.1. Derivation of AVar(m̃) and optimal
design
In the case where only the fracture stress information
is used, the Fisher information matrix is derived in the
same way as [7]. If K design variables are applied, we
get

AVar(m̃) = m2
(

π2

6
N + �K

)−1

, (25)

where �K is defined by

�K ≡
K∑

k=1

dk1 log2 φk −
( ∑K

k=1 dk1 log φk
)2∑K

k=1 dk1

+
K∑

k=1

dk2 log2 φk −
( ∑K

k=1 dk2 log φk
)2∑K

k=1 dk2

.

(26)

In the case of K = 2 and the same heights, �2 becomes

�2 =
{

− 1

N

(
N1 − N

2

)2

+ N

4

}
log2

(
φ1

φ2

)
. (27)

and its maximum is given by

N

4
log2

(
b1L1

b2L2

)
. (28)

when N1 = N/2. Therefore, we have

AVar(m̃) = m2

N

{
π2

6
+ 1

4
log2

(
b1L1

b2L2

)}−1

. (29)

The optimality of K = 2 under some heights can be
proven by the same approach as that reported in [2].

A.2. Derivation of AVar(m∗)
In the case where only the fracture location information
is used, the second derivative of log likelihood based
on (18) is given by

∂2

∂m2
log L∗ = − 1

(m + 1)2
(2n1 + n2). (30)

Therefore, the Fisher information matrix becomes

−E

[
∂2

∂m2
log L∗

]
= 1

(m + 1)2
(2E[n1] + E[n2]),

(31)

where E[·] represents the expectation of [·]. Using
E[n1] = N · p1 and E[n2] = N · p2, we get

AVar(m∗) = (m + 1)2

N (p1 + 1)
. (32)

References
1. W. W E I B U L L , Ingeniors Ventenskaps Akademiens Handlingar 151

(1939) 1.
2. H . L . O H and I . F I N N I E , Intern. J. Fract. Mech. 6 (1970)

287.
3. S . A O K I and M. S A K A T A , Int. J. Fracture 16 (1980) 459.
4. S . A O K I et al., “Statistical Approach to Time-dependent Failure of

Brittle Materials,” Int. J. Fracture 21 (1983) 285.
5. Y . M A T S U O and K. K I T A K A M I , J. Ceram. Soc. Jpn. 93 (1985)

757 (in Japanese).
6. Idem., “On the Statistical Theory of Fracture Location Combined

with Competing Risk Theory,” in Fracture Mechanics of Ceramics,
Vol. 17, edited by R. C. Bradt et al. (Plenum Pub. Corp., 1986) p. 223.

7. K . S U Z U K I , T . N A K A M O T O and Y. M A T S U O , “Optimal
Design for Estimating Weibull Shape Parameter Using Both Frac-
ture Stress and Fracture Locations,” Technical Report, University of
Electro-Communications, Dept. of Communications and Systems En-
gineering, 2002, UEC-CAS-2002-01.

Received 21 February 2002
and accepted 21 August 2003

280


